DaLiF: a data lifecycle framework for data-driven governments
نویسندگان
چکیده
Abstract The public sector, private firms, business community, and civil society are generating data that is high in volume, veracity, velocity comes from a diversity of sources. This kind known as big data. Public Administrations (PAs) pursue “new oil” implement data-centric policies to transform into knowledge, promote good governance, transparency, innovative digital services, citizens’ engagement policy. From the above, Government Big Data Ecosystem (GBDE) emerges. Managing throughout its lifecycle becomes challenging task for governmental organizations. Despite vast interest this ecosystem, appropriate management still challenge. study intends fill above-mentioned gap by proposing framework data-driven governments. Through Systematic Literature Review, we identified analysed 76 lifecycles models propose governments (DaliF). In way, contribute ongoing discussion around management, which attracts researchers’ practitioners’ interest.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملA Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملDynamic data-driven framework for reputation management
The landscape of security has been changed by the increase in online market places, and the rapid growth of mobile and wireless networks. Users are now exposed to greater risks as they interact anonymously in these domains. Despite the existing security paradigms, trust among users remains a problem. Reputation systems have now gained popularity because of their effectiveness in providing trust...
متن کاملTowards a Data-driven Ontology Engineering Framework
The dynamic nature of ontology requires a new methodology to discover the evolving semantics of a particular conceptualization and maintain the novelty of specific ontology with minimal human intervention. This paper posits a conceptual framework that supports a data-driven, iterative, and self-correcting ontology engineering methodology for developing application-oriented and light-weight onto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Big Data
سال: 2021
ISSN: ['2196-1115']
DOI: https://doi.org/10.1186/s40537-021-00481-3